Типы размножения микроорганизмов

Содержание

Размножение бактерий путем деления — самый распространенный метод увеличения численности микробной популяции. После деления происходит рост бактерий до исходного размера, для чего необходимы определенные вещества (факторы роста).

Способы размножения бактерий различны, но для большинства их видов присуща форма бесполового размножения способом деления. Способом почкования бактерии размножаются исключительно редко. Половое размножение бактерий присутствует в примитивной форме.

Рис. 1. На фото бактериальная клетка в стадии деления.

Генетический аппарат бактерий

Генетический аппарат бактерий представлен единственной ДНК — хромосомой. ДНК замкнута в кольцо. Хромосома локализована в нуклеотиде, не имеющем мембраны. В бактериальной клетке имеются плазмиды.

Нуклеоид

Нуклеоид является аналогом ядра. Он расположен в центре клетки. В нем локализована ДНК — носитель наследственной информации в свернутом виде. Раскрученная ДНК достигает в длину 1 мм. Ядерное вещество бактериальной клетки не имеет мембраны, ядрышка и набора хромосом, не делится митозом. Перед делением нуклеотид удваивается. Во время деления число нуклеотидов увеличивается до 4-х.

Рис. 2. На фото бактериальная клетка на срезе. В центральной части виден нуклеотид.

Плазмиды

Плазмиды представляют собой автономные молекулы свернутые в кольцо двунитевой ДНК. Их масса значительно меньше массы нуклеотида. Несмотря на то, что в ДНК плазмид закодирована наследственная информация, они не являются жизненно важными и необходимыми для бактериальной клетки.

Рис. 3. На фото бактериальная плазмида.

Этапы деления

После достижения определенных размеров, присущих взрослой клетке, запускаются механизмы деления.

Репликация ДНК

Репликация ДНК предшествует клеточному делению. Мезосомы (складки цитоплазматической мембраны) удерживают ДНК до тех пор, пока процесс деления (репликации) не завершится.

Репликация ДНК осуществляется с помощью ферментов ДНК-полимеразами. При репликации водородные связи в 2-х спиральной ДНК разрываются, в результате чего из одной ДНК образуются две дочерние односпиральные. В последующем, когда дочерние ДНК заняли свое место в разделенных дочерних клетках, происходит их восстановление.

Как только репликация ДНК завершилась, в результате синтеза клеточной стенки появляется перетяжка, разделяющая клетку пополам. Вначале делению подвергается нуклеотид, затем цитоплазма. Синтез клеточной стенки завершает деление.

Рис. 4. Схема деления бактериальной клетки.

Обмен участками ДНК

У сенной палочки процесс репликации ДНК завершается обменом участками 2-х ДНК.

После деления клетки образуется перемычка, по которой ДНК одной клетки переходит в другую. Далее обе ДНК сплетаются. Некоторые отрезки обоих ДНК слипаются. В местах слипания происходит обмен отрезками ДНК. Одна из ДНК по перемычке уходит обратно в первую клетку.

Рис. 5. Вариант обмена ДНК у сенной палочки.

Типы делений бактериальных клеток

Если клеточное деление опережает процесс разделения, то образуются многоклеточные палочки и кокки.

При синхронном клеточном делении образуются две полноценные дочерние клетки.

Если нуклеотид делится быстрее самой клетки, то образуются многонуклеотидные бактерии.

Способы разделения бактерий

Деление с помощью разламывания

Деление с помощью разламывания характерно для сибиреязвенных бацилл. В результате такого деления клетки переламываются в местах сочленения, разрывая цитоплазматические мостики. Далее отталкиваются друг от друга, образуя цепочки.

Скользящее разделение

При скользящем разделении после деления клетка обосабливается и как бы скользит по поверхности другой клетки. Данный способ разделения характерен для некоторых форм эшерихий.

Секущееся разделение

При секущемся разделении одна из разделившихся клеток свободным концом описывает дугу круга, центром которого является точка ее контакта с другой клеткой, образуя римскую пятерку или клинопись (коринебактерии дифтерии, листерии).

Рис. 6. На фото бактерии палочковидной формы, образующие цепочки (сибиреязвенные палочки).

Рис. 7. На фото скользящий способ разделения кишечных палочек.

Рис. 8. Секущийся способ разделения коринебактерий.

Вид скоплений бактерий после деления

Скопления делящихся клеток имеют разнообразную форму, которая зависит от направления плоскости деления.

Шаровидные бактерии располагаются по одному, по двое (диплококки), пакетами, цепочками или как гроздья винограда. Палочковидные бактерии — цепочками.

Спиралевидные бактерии — хаотично.

Рис. 9. На фото микрококки. Они круглые, гладкие, имеют белую, желтую и красную окраску. В природе микрококки распространены повсеместно. Живут в разных полостях человеческого организма.

Рис. 10. На фото бактерии диплококки — Streptococcus pneumoniae.

Рис. 11. На фото бактерии сарцины. Кокковидные бактерии соединяются в пакеты.

Рис. 12. На фото бактерии стрептококки (от греческого «стрептос» — цепочка). Располагаются цепочками. Являются возбудителями целого ряда заболеваний.

Рис. 13. На фото бактерии «золотистые» стафилококки. Располагаются, как «гроздья винограда». Скопления имеют золотистую окраску. Являются возбудителями целого ряда заболеваний.

Рис. 14. На фото извитые бактерии лептоспиры — возбудители многих заболеваний.

Рис. 15. На фото палочковидные бактерии рода Vibrio.

Скорость деления бактерий

Скорость деления бактерий крайне высока. В среднем одна бактериальная клетка делится каждые 20 минут. В течение только одних суток одна клетка образует 72 поколения потомства. Микобактерии туберкулеза делятся медленно. Весь процесс деления занимает у них около 14 часов.

Рис. 16. На фото отображен процесс деления клетки стрептококка.

Половое размножение бактерий

В 1946 году учеными было обнаружено половое размножение в примитивной форме. При этом гаметы (мужские и женские половые клетки) не образуются, однако некоторые клетки обмениваются генетическим материалом (генетическая рекомбинация).

Передача генов осуществляется в результате конъюгации — однонаправленного переноса части генетической информации в виде плазмид при контакте бактериальных клеток.

Плазмиды представляют собой молекулы ДНК небольшого размера. Они не связаны с геномом хромосом и способны удваиваться автономно. В плазмидах содержаться гены, которые повышают устойчивость бактериальных клеток к неблагоприятным условиям внешней среды. Бактерии часто передают эти гены друг другу. Отмечается так же передача генной информации бактериям другого вида.

При отсутствии истинного полового процесса именно конъюгация играет огромную роль при обмене полезными признаками. Так передается способность бактерий проявлять лекарственную устойчивость. Для человечества особо опасным является передача устойчивости к антибиотикам между болезнетворными популяциями.

Рис. 17. На фото момент конъюгации двух кишечных палочек.

Фазы развития бактериальной популяции

При посевах на питательную среду развитие бактериальной популяции проходит несколько фаз.

Исходная фаза

Исходная фаза — это период от момента посева до их роста. В среднем исходная фаза длится 1 — 2 часа.

Фаза задержки размножения

Это фаза интенсивного роста бактерий. Ее длительность составляет около 2-х часов. Она зависит от возраста культуры, периода приспособления, качества питательной среды и др.

Логарифмическая фаза

В эту фазу отмечается пик скорости размножения и увеличения бактериальной популяции. Ее длительность составляет 5 — 6 часов.

Фаза отрицательного ускорения

В эту фазу отмечается спад скорости размножения, уменьшается количество делящихся и увеличивается число погибших бактерий. Причина отрицательного ускорения — истощение питательной среды. Ее длительность составляет около 2-х часов.

Стационарная фаза максимума

В стационарную фазу отмечается равное количество погибших и вновь образованных особей. Ее длительность составляет около 2-х часов.

Фаза ускорения гибели

В эту фазу прогрессивно нарастает количество погибших клеток. Ее длительность составляет около 3-х часов.

Фаза логарифмической гибели

В эту фазу клетки бактерий отмирают с постоянной скоростью. Ее длительность составляет около 5-и часов.

Фаза уменьшения скорости отмирания

В эту фазу оставшиеся живыми клетки бактерий переходят в состояние покоя.

Читайте также:  Миома матки с аденомиозом что это

Рис. 18. На рисунке отображена кривая роста бактериальной популяции.

Рис. 19. На фото колонии синегнойной палочки сине-зеленого цвета, колонии микрококков желтого цвета, колонии Bacterium prodigiosum кроваво-красного цвета и колонии Bacteroides niger черного цвета.

Рис. 20. На фото колонии бактерий. Каждая колония — потомство одной-единственной клетки. В колонии число клеток исчисляется миллионами. вырастает колония за 1 — 3 суток.

Деление магниточувствительных бактерий

В 1970-х годах были открыты бактерии, обитающие в морях, которые обладали чувством магнетизма. Магнетизм позволяет этим удивительным существам ориентироваться по линиям магнитного поля Земли и находить серу, кислород и другие, так необходимые ей вещества. Их «компас» представлен магнитосомами, которые состоят из магнита. При делении магниточувствительные бактерии делят свой компас. При этом перетяжки при делении становится явно недостаточно, поэтому бактериальная клетка сгибается и делает резкий перелом.

Рис. 21. На фото момент деления магниточувствительной бактерии.

Рост бактерий

Вначале деления бактериальной клетки две молекулы ДНК расходятся в разные концы клетки. Далее клетка делится на две равноценные части, которые отделяются друг от друга и увеличиваются до исходного размера. Скорость деления многих бактерий составляет в среднем 20 — 30 минут. В течение только одних суток одна клетка образует 72 поколения потомства.

Масса клеток в процессе роста и развития быстро поглощает питательные вещества из окружающей среды. Этому способствуют благоприятные факторы внешней среды — температурный режим, достаточное количество питательных веществ, необходимая pH среды. Для клеток аэробов необходим кислород. Для анаэробов он представляет опасность. Однако безграничное размножение бактерий в природе не происходит. Солнечный свет, сухой воздух, недостаток пищи, высокая температура окружающей среды и другие факторы губительно действуют на бактериальную клетку.

Рис. 22. На фото момент деления клетки.

Факторы роста

Для роста бактерий необходимы определенные вещества (факторы роста), часть из которых синтезируется самой клеткой, часть поступает из окружающей среды. Потребность в факторах роста у всех бактерий разная.

Потребность в факторах роста является постоянным признаком, что позволяет использовать его для идентификации бактерий, подготовке питательных сред и использовать в биотехнологии.

Факторы роста бактерий (бактериальные витамины) — химические элементы, большинством из которых являются водорастворимые витамины группы В. В эту группу входят так же гемин, холин, пуриновые и пиримидиновые основания и другие аминокислоты. При отсутствии факторов роста наступает бактериостаз.

Бактерии используют факторы роста в минимальных количествах и в неизменном виде. Ряд химических веществ этой группы входят в состав клеточных ферментов.

Рис. 23. На фото момент деления палочковидной бактерии.

Важнейшие бактериальные факторы роста

  • Витамин В1 (тиамин). Принимает участие в углеводном обмене.
  • Витамин В2» (рибофлавин). Принимает участие в окислительно-восстановительных реакциях.
  • Пантотеновая кислота является составной частью кофермента А.
  • Витамин В6 (пиридоксин). Принимает участие в обмене аминокислот.
  • Витамины В12 (кобаламины — вещества, содержащие кобальт). Принимают активное участие в синтезе нуклеотидов.
  • Фолиевая кислота. Некоторые ее производные входят в состав ферментов, катализирующих процессы синтеза пуриновых и пиримидиновых оснований, а также некоторых аминокислот.
  • Биотин. Участвует в азотистом обмене, а также катализирует синтез ненасыщенных жирных кислот.
  • Витамин РР (никотиновая кислота). Участвует в окислительно-восстановительных реакциях, образовании ферментов и обмене липидов и углеводов.
  • Витамин Н (парааминобензойная кислота). Является фактором роста многих бактерий, в том числе населяющих кишечник человека. Из парааминобензойной кислоты синтезируется фолиевая кислота.
  • Гемин. Является составной частью некоторых ферментов, которые принимают участие в реакциях окислениях.
  • Холин. Принимает участие в реакциях синтеза липидов клеточной стенки. Является поставщиком метильной группы при синтезе аминокислот.
  • Пуриновые и пиримидиновые основания (аденин, гуанин, ксантин, гипоксантин, цитозин, тимин и урацил). Вещества необходимы главным образом в качестве компонентов нуклеиновых кислот.
  • Аминокислоты. Эти вещества являются составляющими белков клетки.

Потребность в факторах роста некоторых бактерий

Бактерии сапрофиты питаются органическими веществами погибших организмов. Они потребляют минимум питательных веществ. Бактерии паразиты нуждаются в повышенном количестве аминокислот и других факторов роста.

Ауксотрофы для обеспечения жизнедеятельности нуждаются в поступлении химических веществ из вне. Например, клостридии не способны синтезировать лецитин и тирозин. Стафилококки нуждаются в поступлении лецитина и аргинина. Стрептококки нуждаются в поступлении жирных кислот — компонентов фосфолипидов. Коринебактерии и шигеллы нуждаются в поступлении никотиновой кислоты. Золотистые стафилококки, пневмококки и бруцеллы нуждаются в поступлении витамина В1. Стрептококки и бациллы столбняка — в пантотеновой кислоте.

Прототрофы самостоятельно синтезируют необходимые вещества.

Рис. 24. Разные условия окружающей среды по-разному влияют на рост колоний бактерий. Слева — стабильный рост в виде медленно расширяющегося круга. Справа — быстрый рост в виде «побегов».

Изучение потребности бактерий в факторах роста позволяет ученым получать большую микробную массу, так необходимую при изготовлении антимикробных препаратов, сывороток и вакцин.

Подробно о бактерияx читай в статьях:

Размножение бактерий является механизмом повышения числа микробной популяции. Деление бактерий — основной способ размножения. После деления бактерии должны достигнуть размеров взрослых особей. Рост бактерий происходит путем быстрого поглощения питательных веществ их окружающей среды. Для роста необходимы определенные вещества (факторы роста), часть из которых синтезирует сама бактериальная клетка, часть поступает из окружающей среды.

Изучая рост и размножение бактерий, ученые постоянно открывают полезные свойства микроорганизмов, использование которых в повседневной жизни и на производстве ограничивается только их свойствами.

Основные понятия

Для микроорганизмов, как и для других живых существ, характерны рост и размножение. Под ростом клетки подразумевают согласованное увеличение количества всех химических компонентов (например, белка, РНК, ДНК), ведущее в конечном счете к возрастанию размеров и массы клетки. Рост клетки не безграничен, достигнув определенной величины, она прекращает рост и начинает размножаться. Размножение — это увеличение числа клеток микроорганизмов в популяции. Микроорганизмы размножаются поперечным делением, происходящим в процессе роста, почкованием или образованием спор.

Размножение. Прокариоты обычно размножаются бесполым путем — бинарным делением. В начале деления клетка удлиняется, затем делится нуклеоид. Воспроизведение нуклеоида, содержащего всю генетическую информацию, необходимую для жизнедеятельности микроорганизма, — наиболее важный из всех процессов, которые происходят при росте клетки.

Нуклеоид представлен суперспирализованной и весьма плотно уложенной молекулой самореплицируюшейся ДНК, известной под названием репликона. К ре пли конам относят также плазмиды — генетические структуры, способные к самостоятельной репликации. Репликация ДНК осуществляется при участии ферментов ДНК-по- лимераз. Процесс начинается в определенной точке ДНК и происходит одновременно в двух противоположных направлениях. Заканчивается репликация также в определенном месте ДНК.

В результате репликации количество ДНК в клетке удваивается. Вновь синтезированные молекулы ДНК постепенно расходятся в образующиеся дочерние клетки. Все это позволяет дочерней клетке иметь совершенно тождественную материнской по последовательности нуклеотидов молекулу ДНК. Считают, что репликация ДНК занимает почти 80% всего времени, затрачиваемого бактериальной клеткой на деление.

После завершения репликации ДНК наблюдается целый комплекс процессов, ведущих к образованию межклеточной перегородки. Начинаются они с врастания двух слоев цитоплазматической мембраны с обеих сторон клетки, затем между слоями мембраны синтезируется пептидогликан и, наконец, формируется перегородка из двух слоев цитоплазматической мембраны и пептидогликана.

Во время репликации ДНК и образования делящей перегородки клетка микроорганизма непрерывно растет. В этот период происходят синтез пептидогликана клеточной стенки и составляющих цитоплазматической мембраны, образование новых рибосом и других органелл и соединений цитоплазмы. На последней стадии деления дочерние клетки отделяются друг от друга. У некоторых видов бактерий процесс идет не до конца, в результате образуются цепочки клеток.

При делении палочковидных бактерий клетки вначале растут в длину (диаметр клетки не меняется). Когда бактерии становятся вдвое длиннее, палочка несколько сужается посередине, а затем распадается на две клетки. Таким образом, рост клетки идет вдоль длинной оси, а деление осуществляется в плоскости, перпендикулярной этой оси. Чаще всего клетка делится на две равные части (изоморфное деление), однако встречается и неравномерное (гетероморфное) деление, когда дочерняя клетка больше материнской.

На рисунке 34 показано окончание деления бактерии со жгутиками. Жгутики остаются у материнской клетки, у дочерней они вырастают позднее. При многочисленных исследованиях жгутики обычно находили только у одной клетки из недавно разделившейся пары. Можно полагать, что материнская клетка сохраняет главную часть первоначальной клеточной стенки, фимбрии и жгутики.

Читайте также:  Герпетическая инфекция лечение

Спирохеты, риккетсии, а также некоторые дрожжи и мице- лиальные грибы, простейшие и другие организмы размножаются поперечным делением клеток. Миксобактерии делятся перетяжкой. Сначала клетка в месте деления слегка сужается, далее

Рис. 34. Недавно разделившаяся клетка бактерии рода Klebsiella. Электронная микрофотография, х 2500 (по: К. Дугюл)

клеточная стенка, постепенно впячиваясь с обеих сторон внутрь клетки, все больше и больше сужает ее и, наконец, делит на две. Дочерняя клетка, одетая уже собственной цитоплазматической мембраной, еше некоторое время сохраняет общую клеточную стенку.

Почкование у бактерий представляет собой разновидность бинарного деления и у ряда форм почти не отличается от деления. Например, у нитрифицирующих (Nitrobacter) и некоторых фотосинтезирующих (Rhodopseudomonas) бактерий клетки делятся, но растут лишь с одного полюса материнской клетки, поэтому образующиеся новые клетки неравноценны — в большинстве случаев между ними можно обнаружить морфологические отличия. Иногда у бактерий наблюдается половой процесс, или конъюгация (см. главу 4).

Клеточные циклы бактерий. Бактериальная клетка проходит от деления к делению клеточный цикл, равнозначный онтогенезу (периоду от возникновения бактериальной клетки до прекращения ее существования). При отсутствии дифференциации клеточный цикл бактерий представляется вегетативным клеточным циклом, который включает процессы, связанные с ростом и делением. У бактерий выделяют три типа вегетативного клеточного цикла:

  • • мономорфный, когда при делении образуется только один морфологический тип клеток;
  • • диморфный, когда при делении образуются две клетки, отличающиеся формой, размерами и другими признаками;
  • • полиморфный, свойственный бактериям, которые в зависимости от состава среды могут образовывать клетки двух и более морфологически разных типов.

Для большинства бактерий характерен мономорфный клеточный никл. До наступления деления клетка проходит ряд периодов. Началу репликации хромосомы (инициации) предшествует период А, во время которого у новой клетки синтеза ДНК не происходит. Затем наступает период С, во время которого осуществляются инициация репликации, репликация ДНК и ее терминация. Третий период — D занимает время от репликации хромосомы до разделения клеток. В ряде случаев выделяют также и Т-период, который занимает время от начала до конца образования перегородки или перетяжки между вновь образованными дочерними клетками.

Диморфный клеточный цикл наблюдается у грамотрица- тсльных бактерий, он характерен, например, для представителей рода Caulobacter и некоторых почкующихся форм. В процессе размножения Caulobacter образуются два типа клеток — подвижные со жгутиками и неподвижные со стебельком. Подвижные клетки обычно рассматриваются как дочерние, неподвижные со стебельками — как материнские.

Полиморфный клеточный цикл свойствен бактериям таких родов, как Arthrobacter, Hyphomicmbium, Rhodomicrobium и др. Наиболее характерный представитель бактерий с полиморфным циклом — Arthrobacter. Сначала у него формируются палочковидные неправильной формы клетки, затем переходящие в кокки; последние удлиняются, превращаясь в палочки. Интересной особенностью палочковидных бактерий данного рода является их способность при делении образовывать фигуры, подобные римской цифре V.

Для некоторых бактерий характерно образование специализированных клеток и особый порядок прохождения жизненных циклов (неточная дифференцировка бактерий). Так, у представителей семейства Bacillaceae наблюдается образование эндоспор, семейства Azotobacteriaceae цист, пурпурной несерной бактерии Rhodomicrobium — экзоспор. Для многих облигатно паразитических и симбиотических бактерий характерно образование специализированных клеток, называемых элементарными тельцами (ЭТ).

Миксобактерии отличаются сложными жизненными циклами. Их палочковидные клетки с закругленными или заостренными концами способны ползать по плотному субстрату. Размножаются вегетативные клетки бинарным делением. В определенных условиях, чаще при истощении пищи и на поверхности твердого субстрата, клетки миксобактсрий собираются и образуют плодовые тела, которые состоят из слизи и дифференцированных покоящихся клеток, называемых миксоспорами, или микроцистами.

Время генерации. В результате роста и размножения из одной клетки микроорганизма образуется колония его потомков. Микроорганизмы отличаются высоким темпом размножения, оцениваемым по времени генерации, т. е. времени, в течение которого происходит деление клетки. Время генерации неодинаково у разных видов микроорганизмов, у клеток одною вида, но разного возраста; оно зависит также от условий роста (состава питательной среды, температуры, pH и других факторов).

При благоприятных условиях время генерации многих микроорганизмов колеблется от 20 до 30 мин. При такой скорости роста можно получить шесть генераций за 2 ч (у человека столько же поколений проходит за 120 лет). Вследствие способности к быстрому размножению в природе бактерии численно превышают все другие живые организмы. Однако бактерии не могут очень долго продолжать расти с периодом генерации 20 мин. Если бы такой рост был возможен, то из одной-единственной клетки кишечной палочки через 24 ч образовалось бы 2 72 , или около I0 22 потомков, общая масса которых составила бы несколько десятков тысяч тонн, а сше через 24 ч роста бактерии масса ее потомков превысила бы в несколько раз массу земного шара. Недостаток пиши и накопление продуктов распада ограничивают столь бурное размножение бактерий. Однако в проточной среде они способны делиться каждые 15—18 мин.

Фазы цикла развития культуры бактерий. Наблюдения за ростом микроорганизмов, культивируемых на жидкой среде в замкнутых резервуарах, показывают, что скорость их роста изменяется во времени. Внесенные в питательную среду микроорганизмы сначала не развиваются — «привыкают» к условиям среды. Затем начинается размножение со все возрастающей скоростью, достигающей максимальной, на которую данный вид способен в данной среде. По мере исчерпания запаса питательных веществ и накопления продуктов обмена рост замедляется, а затем прекращается полностью. Цикл развития культуры бактерий состоит из ряда фаз (рис. 35).

Рис. 35. Фазы роста бактерий: I — исходная (стационарная фаза); II — фаза задержки размножения; III — логарифмическая фаза; IV — фаза отрицательного ускорения; V — стационарная фаза максимума; VI — фаза ускорения гибели клеток; VII — фаза логарифмической гибели; VIII — фаза уменьшения скорости отмирания

Первая фаза — исходная, или стационарная. Начинается после внесения микроорганизмов в питательную среду и продолжается 1—2 ч. Количество бактерий во время этой фазы не увеличивается, и клетки не растут.

Вторая, или л а г-фаза, — период задержки размножения. В указанное время бактерии, внесенные в свежую питательную среду, начинают интенсивно расти, но скорость их деления пока невысока. Две первые фазы развития бактериальной популяции называют периодом приспособления к новой среде. К концу лаг-фазы клетки часто увеличиваются по объему. Длительность лаг-фазы зависит как от внешних условий, так и от возраста бактерий и их видовой специфичности.

Третья фаза — интенсивного логарифмического, или экспоненциального, размножения. В этот период размножение бактерий идет с наибольшей скоростью и число клеток увеличивается в геометрической прогрессии.

Четвертая фаза — отрицательного ускорения. Клетки бактерий становятся менее активными, и период генерации удлиняется. Одна из причин, замедляющих размножение бактерий, — истощение питательной среды и накопление в ней токсичных продуктов обмена. Это замедляет ритм размножения. Некоторые клетки перестают размножаться и погибают.

Пятая фаза — стационарная. Период, когда число вновь возникающих клеток примерно равно числу отмирающих. Поэтому количество живых клеток некоторое время остается практически неизменным. Однако общая численность живых и мертвых бактерий несколько увеличивается, хотя и не очень быстро. Данную фазу иногда называют максимально стационарной, так как численность клеток в среде во время нее достигает максимума.

Шестая — восьмая фазы — отмирания — характеризуются тем, что отмирание клеток преобладает над размножением. Во время прохождения шестой фазы увеличивается число отмерших клеток. Седьмая фаза — логарифмической гибели клеток, когда они отмирают с постоянной скоростью. Во время восьмой фазы скорость отмирания клеток бактерий постепенно уменьшается. Отмирание в последние три фазы связано с изменением физико-химических свойств питательной среды в неблагоприятную для бактерий сторону и другими причинами. Ритм гибели клеток в эти фазы становится быстрым, и число живых клеток все более снижается, до тех пор пока они почти полностью не отмирают.

Читайте также:  Лапаротомия миомы матки послеоперационный период

В описанных выше фазах развития микроорганизмов при культивировании в замкнутом резервуаре последние все время находятся в меняющихся условиях. Это так называемая непроточная культура микроорганизмов. Первое время они имеют в избытке все питательные вещества, затем постепенно начинают проявляться нсдостаток в питании и отравление продуктами обмена. Все указанное и приводит к снижению скорости роста, в результате чего культура переходит в стационарную фазу.

Однако если добавлять в среду питательные вещества и одновременно удалять продукты обмена, то микроорганизмы могли бы пребывать в течение неопределенного времени в экспоненциальной фазе роста. Такой способ положен в основу проточного культивирования микроорганизмов, осуществляемого в хемостатах и турби- достатах при помощи специальных устройств, обеспечивающих непрерывную подачу среды с регулируемой скоростью и хорошее ее перемешивание. В результате для микроорганизмов создаются неизменные условия, что позволяет поддерживать непрерывный и постоянный прирост клеток при любой скорости роста культуры. Проточное культивирование микроорганизмов поддается автоматическому регулированию, оно весьма перспективно и широко внедряется в практику.

В исследованиях физиологии микроорганизмов важно получение синхронных культур. Так называют бактериальную культуру, или популяцию, в которой все клетки находятся на одинаковой стадии клеточного цикла. Синхронные культуры обычно используют для изучения процессов роста у отдельных видов бактерий.

Контрольные вопросы и задания

1. В чем выражается рост микроорганизмов? 2. Как происходит размножение микроорганизмов? 3. Какие существуют типы вегетативного клеточного цикла? 4. Кратко охарактеризуйте основные фазы цикла развития культуры бактерий.

Бактерии самая древняя форма жизни на земле. Появились на планете около 3,8-3,6 миллионов лет назад. Агрессивные климатические условия сделали их выносливыми и стойкими к выживанию. Древнейшим существом будут цианобактерии.

Именно они поспособствовали накоплению в атмосфере кислорода. Наш организм состоит из многочисленных их видов. Различают полезные и вредные типы. Обитают везде: в воде, в воздухе, в человеке и животных существах, в слоях почвы.

Объем колоний зависит не только от строения, но и от того как происходит деление бактерий. Строение примитивное. Аппарат представляется слизистой капсулой или мембраной. Микроорганизм состоит из всего-то одной живой клетки.

В цитоплазме нет митохондрий и пластид. У большинства микробов есть жгутики и усики, с помощью них они и передвигаются по крови, сосудам и тканям. Являются прокариотами, то есть в них нет ядра.

Это значит, что микрочастицы ДНК скапливаются в определенной части цитоплазмы. Имеют название нуклеотиды. Нуклеотиды своеобразный род ядра, в нем то и содержится информация. ДНК хранит сведения в сжатом виде. При ее разворачивании длина достигает 1 мм.

Размножение бактерий происходит путем деления.

Следует знать, что бактерии размножаются только при наличии благоприятных факторов, каких рассмотрим ниже.

Условия для развития

Для их роста нужны:

  1. свет;
  2. температура;
  3. наличие кислорода;
  4. влажность;
  5. фактор щелочности и кислотности;

У медиков интерес вызывает температурные условия. Для того, чтобы клетки делились требуется определенная температура. Некоторые классы при очень низкой впадают в состояние анабиоза или спячки, другие же только при высокой не могут продолжить свой рост и разрушаются.

Если одних можно убить кипячением воды, другие прекрасно себя чувствуют, также и с замораживанием. Среди этого предела есть средние условия при которых может осуществляться максимальное развитие с высокой скоростью. Нужная температурная фаза от 23 до 30 градусов, для течения патогенной флоры требуется 38 градусов.

В этой среде плодятся бактериальные простейшие. В идеальных условия прокариоты способны производить 34 триллиона потомков за сутки. Состояние взросления происходит где-то за 20 минут. К счастью живут они не долго, несколько минут или часов.

Что нужно для некоторых микроорганизмов?

Так, например сапрофиты поедают целостные остатки умерших существ. Нуждаются в совсем минимальном количестве хороших макроэлементов. Паразитарные виды требуют усиленного питания. Ауксотрофам надо поступление хим. веществ из вне. Клостридии не могут осуществлять синтез лецитина и тирозина.

Стафилококковая группа нуждается в аргинине и лецитине. Стрептококки в фосфолипидах. Шигеллам, корине бактериям нужна подпитка никотиновая кислота. Золотистый стафилококк, пневмококк, бруцеллез не сможет без витамина Б1, а вот прототрофы сами синтезируют необходимое.

Пути созревания

Как говорилось ранее развитие простейших осуществляется путем деления.

Оно бывает:

  • простым;
  • почкованием;
  • конъюгацией, половым путем;

Простой путь

При первом методе бактерии могут плодиться равновеликим поперечным делением. Материнские клетки после удваивания нитей ДНК и органелл образуют две части, а именно дочерние клетки. Генетический код сформирован аналогично материнскому.

Они как бы клонируют сами себя. В течение суток из одной клеточки выходит 70 поколений. Если предположить, что все они могли жить, масса составила более 5 тонн. Конечно такое невозможно в природе.

Вегетативный этап

Или проще почкование обозначается тем, что существа выращивают на одном из полюсов вторую почку, то есть себя. При ответвлении наступает разрыв нитей ДНК. Именно гетероцисты участвуют в процессе. К такому методу прибегают цианобактерии и колониальные породы.

Таким образом прокариоты могут вырастить до 4 почек, после чего наступает старение и гибель. Кокковые колонии отделяясь свободно идут в рост.

Спорообразование

Есть раздвоение спорами.

Бациллы репродуцируют себя таким образом при наступлении неблагоприятных условий внешней и внутренней среды. Внутри споры делается особа среда, приостанавливается механизм жизни, уменьшается уровень воды. Если бацилла попала в такое состояние ей не страшен холод, жара, излучения разной этиологии, химические средства.

Как только улучшаются факторы выходят молодые прокариоты. Цикл становится очень длительным. Науке даже известны случаи когда ученые находили простейших, которым десятки, а то и сотни лет.

Половой путь

Конъюгация происходит у бактерий живущих преимущественно в человеческом организме, либо теле животного. Здесь две формы соприкасаются друг с другом и начинается обмен данными. Называется генетическая рекомбинация, образование новых видов.

Половым способом размножаются бактерии кишечной палочки и остальные грамположительные и грамотрицательные типы. Если отсутствует истинное направление то такой обмен между ними является полезным и мочь поспособствовать развитию устойчивости к антибиотикам и другим лекарственным препаратам.

Инциститация

Еще один путь защиты от агрессивных обстоятельств преобразование в цист. Цисты обозначают пузырьки в толстой оболочке. Находится в таком положении бациллы могут очень долго. Даже 200 градусов по Цельсию не уничтожит их. Далее при положительных причинах они выходят наружу делясь бинарно.

Так, что приемы приумножения возбудителей подчиняются внешней среде. Недостаток воды, большое содержание кислорода в воздухе, лишение высокопитательных микроэлементов. Низкие или высокие перепады температур заставляют прибегнуть к спорообразованию, инцистированию.

Не прекращение умножения в течение 10 суток привело бы к полному заселению земного шара паразитами.

Степень бактериальной популяции

Живя в благоприятных условиях клетки находятся на исходной стадии, начальной. Средняя продолжительность 1-2 часа. Задержание роста, занимает примерно пару часов. При логарифмическом периоде бациллы могут размножаться в быстром порядке, пик достигается через 6 часов.

Отрицательное ускорение, когда истощаются питательные запасы микроэлементов и веществ. Стационарная ступень, погибшие особи заменяются новыми уже через два часа. Этап ускоренной гибели, бациллы гибнут через каждые 3 часа. Логарифмический фазис, отмечается постоянная смерть, составляет 6 часов.

Снижение скорости смерти, на этом моменте оставшиеся живые клеточки переходят в состояние покоя.

Многоклеточная стадия

Одноклеточная фаза способна делать все функции организма, на это не влияют соседствующие рядом микроорганизмы. Одноклеточные образовывают клеточные агрегаты, они скрепляются слизью.

Часто появляется скопление бацилл в одну ветвь. Так микобактерии развивают цисты, получается своеобразный обмен. Явление служит пред посылом к многоклеточному формированию. К ним относятся цианобактерии, актиномицеты.

Каким требованиям должны отвечать особи:

  1. агрегированностью клеток;
  2. разделением свойств между ними;
  3. установка должного контакта между особями;

У нитчатых особей структура описана в клеточной стенке, создает взаимосвязь между индивидуумами. Обмен у бактерий происходит веществами и энергией. Некоторые нитчатые помимо вегетативных особей содержат дифференциальные гетероцисты или акинеты.

Локализация

В зависимости от разбивки бациллы имеют определенные виды скоплений:

Первые обнаруживаются в паре или по одному, это диплококки, микрококки, стафилококки. Могут выглядеть как веточки винограда, цепочки. Спиралевидные, разбросаны в хаотичном порядке, к ним причисляются лептоспирозы, вибрио.

Adblock detector