Способы питания бактерий таблица

Все физиологические процессы, такие как движение, рост и размножение, образование спор и капсул, выработка токсинов, могут осуществляться только при постоянном притоке энергии.

В процессе питания организм получает вещества, необходимые для синтеза клеточных структур и являющиеся источником энергии для всех процессов жизнедеятельности. Характерными особенностями питания микробов являются поступление питательных веществ внутрь клетки через всю ее поверхность и высокая скорость процесса обмена веществ.

Клеточная стенка и ЦПМ микроорганизмов непроницаемы для многих высокомолекулярных веществ (полисахаридов, липидов, белков и др.), в связи с чем эти вещества вначале расщепляются экзоферментами, выделяемыми клетками во внешнюю среду, на более простые соединения (моно- и дисахариды, аминокислоты, органические кислоты, глицерин и т. д.). Такой процесс, свойственный только микроорганизмам, называется внешним перевариванием.

Питательные среды, на которых культивируют микроорганизмы в лабораторных и производственных условиях, должны отвечать следующим минимальным требованиям:

• в них должны присутствовать все элементы, из которых строится клетка;

• они должны быть в такой форме, в которой микроорганизмы способны их усваивать;

• они должны иметь оптимальное значение pH;

• среды должны быть стерильными.

Питательные среды различаются по консистенции, составу и назначению.

По консистенции различают жидкие, плотные и полужидкие среды. Плотные и полужидкие готовят путем добавления к жидким средам агар-агара или желатина. Для изготовления плотной среды в жидкую вносят обычно 1,5—2,0 % агар-агара, для полужидкой — 0,2—0,5 %.

Состав питательных сред определяется пищевыми потребностями микроорганизмов. В зависимости от состава исходных компонентов различают среды натуральные, синтетические и полусинтетические.

Натуральные среды состоят из естественных субстратов (мяса, молока, овощей и т. д.). К натуральным средам относятся мясопептонный бульон, гидролизованное молоко, пивное сусло, дрожжевой экстракт, настой сена, картофельная среда и др. Расшифровать химический состав таких сред довольно сложно. Молочнокислые бактерии очень требовательны к источникам питания, поэтому их выращивают в молоке, гидролизованном молоке, молочной сыворотке, пивном сусле, специально разработанных средах.

Синтетической называют среду, составленную из известных химических соединений в определенных количествах. Кишечная палочка неприхотлива в отношении питания, поэтому способна расти на синтетической среде достаточно простого состава.

Полусинтетические среды содержат как известные компоненты, так и субстраты неопределенного состава. Например, в синтетическую среду вносят дрожжевой автолизат или мясопептонный бульон.

По назначению различают элективные и дифференциально-диагностические среды.

Элективные среды используют для выделения отдельных групп микроорганизмов из мест их естественного обитания.

Дифференциально-диагностические среды используют для быстрой индикации микроорганизмов на основе их характерных признаков.

Потребности микроорганизмов в питательных веществах. Исходя из химического состава микроорганизмов, для биосинтеза основных макромолекул клетка должна получать вещества, содержащие макроэлементы С, О, Н, N , S , Р, Са, Fe , Mg и микроэлементы М n , Со, Мо, С u , Zn и др. Макроэлементы требуются в сравнительно больших количествах, от 0,2 до 0,5 г/л, тогда как микроэлементы нужны в очень низких концентрациях — от 0,1 до 0,001 мг/л. Минеральные вещества участвуют в регуляции осмотического давления в клетке, pH и Eh среды. Основной функцией микроэлементов является активация различных ферментов.

Среди всех вышеуказанных элементов наибольшее значение в питании микроорганизмов имеет углерод. В зависимости от используемого источника углерода микроорганизмы делятся на: аутотрофы (от греч. autos — сам, t гор he — пища), использующие для конструктивных целей С O 2, и гетеротрофы (от греч. heteros — другой), потребляющие углерод из органических соединений.

Наибольшая степень гетеротрофности присуща микроорганизмам, являющимся облигатными или факультативными паразитами (от греч. parasitos — нахлебник). К факультативным гетеротрофным паразитам относятся патогенные бактерии, вызывающие инфекционные заболевания у человека, животных и растений; к облигатным, способным существовать только внутри клетки хозяина, относятся риккетсии, хламидии, вирусы, некоторые простейшие.

Следующую крупную группу гетеротрофов составляют сапрофиты (от греч. sapros — гнилой, phyton — растение), использующие для своего питания разлагающиеся растительные или животные ткани. К сапрофитам относится большинство бактерий и микромицетов.

Для многих гетеротрофов оптимальным и наиболее доступным органическим источником углерода являются углеводы. Особенно широко они используют моносахариды — гексозы и пентозы. Некоторые группы микроорганизмов способны использовать в качестве источника углерода органические кислоты, первичные спирты, циклические соединения и др.

Азот и сера входят в состав органических соединений клетки в виде аминогрупп и сульфгидрильных групп аминокислот. Некоторые бактерии поглощают эти два элемента в окисленном состоянии — в форме нитратов и сульфатов. Поэтому они сначала восстанавливаются, а затем уже используются в процессах биосинтеза. Большинство бактерий используют азот в восстановленной форме в виде аминокислот, мочевины. Источником серы могут служить сульфиды или серосодержащие аминокислоты (например, цистеин).

Факторы роста — это вещества, которые не синтезируются многими бактериями, но необходимы им для построения органических компонентов клетки. Поэтому они должны присутствовать в питательной среде для выращивания микроорганизмов. К факторам роста относятся:

• аминокислоты, которые нужны для синтеза белков;

• пурины и пиримидины, используемые для синтеза нуклеиновых кислот;

• витамины, являющиеся простетическими группами или активными центрами некоторых ферментов.

Микроорганизмы, нуждающиеся в факторах роста, называют ауксотрофами. Микроорганизмы, которые сами синтезируют необходимые им факторы роста, называют прототрофами.

9.2.1. Типы питания микроорганизмов

Подразделение микроорганизмов на два основных типа — автотрофы и гетеротрофы — оказалось явно недостаточным, чтобы отразить все многообразие пищевых и энергетических потребностей микроорганизмов. Поэтому классификация микроорганизмов по типам питания включает такие основные критерии, как источник углерода, источник энергии и донор электронов. На основе вышеуказанных критериев все микроорганизмы можно разделить на четыре группы (табл. 6).

Читайте также:  Может ли быть беременность с месячными

Таблица 6. Классификация микроорганизмов по типам питания

Бактерии живут на планете Земля более 3,5 млрд. лет. За это время они многому научились и ко многому приспособились. Как и всему живому, бактериям присущи такие процессы, как питание, дыхание, размножение и спорообразование.

Они вырабатывают ферменты и пигменты, по наличию которых проводится идентификация микроорганизмов. Целая группа ферментов широко применяются в биотехнологии (генетическая инженерия, фармацевтическая, легкая и пищевая промышленность).

Роль бактерий в природе носит глобальный характер. Полезные бактерии выполняют две самые важные экологические функции — они фиксируют азот и участвуют в минерализации органических остатков. Они участвуют в перемещении, концентрации и рассеивании химических элементов в биосфере земли. Бактерии полностью обеспечивают жизнедеятельность человека.

Рис. 1. На фото колонии сенной палочки.

Рис. 2. На фото колонии бактерий, каждая из которых насчитывает миллионы особей. Каждая колония является потомством одной клетки. Они вырастают за 1 — 3 суток.

Химический состав бактерий и обмен веществ

Бактерии, как и все другие клетки на 75 — 85% состоят из воды. Остальную часть составляют органические и минеральные вещества.

Ферменты

Катализаторами обмена веществ внутри бактериальной клетки являются ферменты. В небелковую (простетическую) группу ферментов входят медь, железо, кобальт и цинк. У некоторых бактерий — витамины и их производные.

Вода — основа цитоплазмы клетки. В ней протекает множество биохимических реакций, растворяются вещества, поступающие в клетку, удаляются продукты обмена. Небольшая часть воды связана с клеточными структурами. Потеря воды более 50% необходимого для жизнедеятельности бактерий количества приводит к их гибели.

Органические вещества

В бактериальной клетке находится от 6 до 14% белков, 1 — 4% жиров, углеводы и нуклеиновые кислоты.

Белки — основа любой клетки. В бактериальных клетках они являются основой цитоплазмы. Их много в оболочке клетки. Они входят в состав некоторых клеточных структур, в том числе ферментов — катализаторов обменных реакций. Тысячи белковых молекул уложены вдоль молекулы ДНК.

Липиды (жиры) — энергетический материал бактериальной клетки. Липопротеиды, в состав которых жиры, составляют основу цитоплазматической мембраны. В цитоплазме они находятся в виде гранул и составляют энергетический запас клетки.

Углеводы

Углеводы находятся в цитоплазме, оболочках и капсуле бактерии и представлены сложными углеводами. Углеводы в клетке находятся в виде полисахаридов — крахмала, декстрина, гликогена и клетчатки. Как и жиры, углеводы в виде гликогена откладываются в цитоплазме и представляют собой запас энергетического материала.

Минеральные вещества

Катализаторами обмена веществ внутри бактериальной клетки являются ферменты. В небелковую (простетическую) группу ферментов входят медь, железо, кобальт и цинк. У некоторых бактерий — витамины и их производные. Минеральные вещества в виде фосфора, натрия, магния, хлора и серы входят в состав белков. Они принимают участие в обмене веществ и поддерживают нормальное внутриклеточное осмотическое давление.

Витамины

Витамины входят в небелковую (простетическую) группу ферментов бактерий. Некоторые бактерии сами синтезируют витамины В2 или В12. При участии бифидо-, лакто-, энтеробактерий и кишечной палочки синтезируются витамины К, С, группы В (В1, В2, В5, В6, В7, В9 и В12), фолиевая и никотиновая кислоты.

Рис. 3. На фото срез бактериальной клетки. В центральной части виден нуклеотид. Далее — цитоплазма и клеточная оболочка.

Питание бактерий

Питательные вещества через клеточную стенку путем диффузии проходят внутрь бактерии, а продукты обмена (метаболизма) наружу. Факторы, влияющие на поступление питательных веществ в бактериальную клетку:

  • концентрация вещества,
  • величина молекул,
  • рН среды,
  • проницаемость мембран и др.

Удовлетворение потребности в углероде

Автотрофные бактерии с целью получения углерода используют только углекислый газ. Он является для них единственным источником углерода.

Гетеротрофные бактерии используют для получения углерода разнообразные соединения, содержащие углерод — гексозы, многоатомный спирт, углеводород.

Ряд бактерий использует для этих целей органические вещества и аминокислоты.

Удовлетворение потребности в азоте

Для нормальной жизнедеятельности бактериям необходимы аминокислоты, пурины, пиримидины, некоторые витамины, для синтеза которых необходим азот. Так азотофиксирующие бактерии усваивают молекулярный азот из атмосферного воздуха. Другие бактерии способны усваивать неорганический азот из нитритов, нитратов и солей аммония. Третьи потребляют азот из органических соединений, затрачивая свою энергию.

Рис. 4. Связывать азот и образовывать аммиак умеют сине-зеленые водоросли — цианобактерии.

Удовлетворение потребности бактерий в микроэлементах

Для нормальной жизнедеятельности бактерий нужна сера, фосфор, ионы магния, калия, кальция, железа и другие микроэлементы.

Способы питания

Автотрофные бактерии (автотрофы)

Автотрофы живут в кислородной среде и с целью получения углерода и энергии используют синтез органические вещества из неорганических.

Фотосинтез

Фотоавтотрофы для синтеза органических веществ из неорганических используют энергию солнца. К ним относятся зеленые водоросли, пурпурные и цианобактерии. Процесс носит название фотосинтеза.

Хемосинтез

Хемосинтезирующие бактерии для синтеза органических веществ из неорганических используют химические реакции окисления. Процесс носит название хемосинтеза.

  • Серобактерии — получают энергию за счет окисления серы.
  • Нитрифицирующие бактерии — получают энергию за счет окисления аммония и нитрита.
  • Железобактерии — получают энергию за счет окисления двухвалентного железа.
  • Водородные бактерии — получают энергию за счет окисления водорода.
  • Метилотрофы с целью получения углерода и энергии используют окисленные или замещенные производные метана. Сегодня они представляют особый интерес, как объекты биотехнологии. С их помощью производится белок, ферменты, липиды, гормоны, антиоксиданты, пигменты, полисахариды, факторы транспорта железа и др.

Рис. 5. Зелёные серобактерии в колонне Виноградского.

Гетеротрофные бактерии

Гетеротрофные бактерии используют для построения своего организма и обеспечения его жизнедеятельности готовые органические вещества.

  • Сапрофиты питаются остатками мертвых органических веществ. Для расщепления питательных веществ они выделяют в субстрат пищеварительные ферменты (молочнокислые и бактерии гниения др).
  • Бактерии-симбиоты всегда проживают с другими организмами. Они приносят друг другу пользу (клубеньковые бактерии бобовых растений).
  • Паразитические бактерии потребляют питательные вещества клеток хозяина — менингококки, гонококки и др.
  • Паразитический и сапрофитный образ жизни ведут палочки сыпного тифа, сибирской язвы, бруцеллеза и др.
Читайте также:  Меню при повышенной мочевой кислоте

Рис. 6. На фото корни бобовых растений. Усваивать самостоятельно азот из воздуха бобовые растения не могут. В их корни проникают клубеньковые бактерии. Они связывают азот воздуха, образуя вещества, доступные растениям. Сами же растения выделяют органические вещества, которые служат питанием для бактериальной клетки.

Рис. 7. Клубеньковые бактерии сосредотачиваются вокруг ядра растительной клетки и активно размножаются, образуя инфекционные нити, по которым перемещаются. Они создают сотни килограммов удобрений, содержащих азот на один гектар почвы.

Транспорт питательных веществ

1. У бактериальных клеток, которые при окрашивании по Грамму приобретают фиолетовую окраску (грамположительные), клеточная стенка толстая, многослойная. Ферменты, благодаря которым происходит расщепление питательных веществ, выделяются наружу и расщепляют крупные молекулы белков, полисахаридов и других биополимеров на более простые фрагменты.

2. У бактерий, которые при окрашивании по Грамму приобретают красную окраску (грамотрицательные), клеточная стенка тонкая. Питательные вещества, которые поступают в клетку, расщепляются в периплазматическом пространстве (пространство между клеточной стенкой и мембраной цитоплазмы) гидролитическими ферментами.

Питательные вещества и ионы проникают в бактериальную клетку тремя путями:

  • Пассивная диффузия происходит без использования энергии. При этом используется разница концентраций вещества (градиент концентрации). Так поступают малые полярные и неполярные молекулы кислорода, стероиды, жирные кислоты, вода, углекислый газ, азот, этанол и мочевина.
  • Облегченная диффузия необходимых для клетки веществ протекает при помощи специальных белков, формирующих в мембране клетки каналы, заполненные водой, облегчающие проход нужных молекул.
  • Активная транспортировка основана на работе транспортных белков, перекачивающих вещества, растворенные в воде против их градиента. Такая работа всегда требует затраты энергии.

к содержанию ↑

Дыхание бактерий

При окислении веществ органической или неорганической природы высвобождается энергия, так необходимая для бактериальной клетки. Она идет на образование молекул АТФ — источника энергии. Для использования энергии химических реакций большинство бактерий использует кислород. Этот процесс называется дыханием.

Аэробные бактерии (аэробы)

Аэробы развиваются в средах, содержащих кислород.

  • Облигатные аэробы развиваются только при наличии достаточного количества кислорода в окружающей среде. Такой тип дыхания характерен для бактерий, обитающих в почве, в водной среде, в воздухе. Их дыхание осуществляется через окисление сероводорода, метана, водорода, железа и азота (Sulfomonas denitrificans, Вас. methanicus, Вас. hydrogenes, Ferri bacterium и Nitrosomonas, Nitrobacter). Бактерии этой группы принимают активное участие в круговороте веществ в природе. В наличии кислорода нуждаются патогенные бактерии из рода Bacillus, Bacterium, Bordetella, Brucella, Corynebacterium, Diplococcus, Pasteurella и др. В повышенном содержании кислорода нуждаются микобактерии туберкулеза, туляремии и холеры.
  • Факультативные бактерии способны развиваться при наличии в окружающей среде минимального количества кислорода — Salmonella, Shigella, Escherichia и др.

Рис. 8. На фото аммонифицирующие бактерии подвергают останки погибших животных и растений разложению.

Рис. 9. Разлагают клетчатку целлюлозные бактерии. В результате их работы почва обогащается гумусом, что значительно повышает ее плодородие, а углекислота возвращается в атмосферу. Зеленым цветом окрашены внутриклеточные симбионты, желтым – масса перерабатываемой древесины.

Анаэробные бактерии (анаэробы)

Анаэробы развиваются без доступа кислорода, разлагая органические соединения в бескислородной среде. Свободный кислород подавляет активность ферментов этих бактериальных клеток. Бактерии этого типа обитают в компостных кучах, ранах больного человека, кишечном тракте людей и животных.

    Облигатные анаэробы не развиваются при наличии кислорода в окружающей среде (бактерии рода Clostr >

Рис. 10. На фото газовая гангрена. Заболевание вызывается анаэробными бактериями рода клостридиум.

Рис. 11. На фото сибирская язва. Заболевание вызывается анаэробными бактериями рода бациллюс.

Рис. 12. Биоспорин-Биофарма — отечественный препарат, содержащий апатогенные бактерии рода Bacillus. Споры Bacillus выделяют противомикробные вещества, способные подавлять рост целого ряда условно-патогенных бактерий, не влияя при этом на нормальную микрофлору кишечника.

Ферменты бактерий

Все биохимические процессы в бактериальной клетке протекают при помощи ферментов — биологических катализаторов химических реакций в живой системе. Их действие направлено только на одно вещество. Ферменты специфичны для каждого вида бактерий. По наличию определенных ферментов проводится идентификация микроорганизмов.

  • Ферменты бактериальной клетки состоят из 2-х частей — белковой и небелковой (простетической). Белковая часть состоит из простых белков. В небелковую часть входят такие микроэлементы, как железо, медь, кобальт, цинк, витамины и их производные.
  • В зависимости от вида катализирующих особенностей ферменты подразделяются на 6 групп: оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы и лигазы.
  • Лигазы и рестриктазы широко применяются в биотехнологии (генетическая инженерия, фармацевтическая, легкая и пищевая промышленность).
  • Ферменты в бактериальной клетке распределены не хаотично, а строго упорядоченно.
  • Ферменты, отвечающие за энергетический обмен и транспортировку питательных веществ, находятся в цитоплазме клеток.
  • Ферменты, принимающие участие в белковом синтезе, имеют связь с рибосомами. Ряд ферментов находятся в цитоплазме хаотично.
  • Эндоферменты функционируют внутри бактериальной клетки. Они ускоряют реакции биосинтеза и катаболизма. Экзоферменты выделяются клеткой наружу, где происходит расщепление питательных веществ на более простые.
  • Гидролитические ферменты участвуют в расщеплении макромолекул. Субстратом для них служат различные сахара.
  • Протеолитические ферменты расщепляют белки.
  • Патогенные бактерии выделяют ферменты, разрушающие ткани организма человека, животного или растений. Например, стафилококки выделяют плазмокоагулазу — главного фактора патогенности микроба.

Рис. 13. Способность уксусных палочек окислять этиловый спирт до уксусной кислоты используется сегодня для получения уксуса, применяемого в пищевых целях и при заготовке кормов для животных — силосовании (консервировании). На фото процесс силосования кормов. Силос — сочный корм, обладающий высокой кормовой ценностью.

Рис. 14. На фото колонии бактерий, которые растут и размножаются на капле нефти. Они вырабатывают поверхностно-активные вещества, отчего нефтяная пленка расползается (убегает). Широко применяется деятельность ксенобактерий для очистки почв и водоемов, загрязненных нефтепродуктами.

Светящиеся и ароматообразующие микроорганизмы

Некоторые бактерии способны светиться (люминесцировать) в темноте. Свечение связано с выделением фермента люциферазы, который образует кванты света в результате окислительно-восстановительных реакций. На многие вопросы, связанные с этим явлением, ученые сегодня так и не нашли ответы.

Читайте также:  Сыпь на головке члена у мужчины

Колонизируясь на субстратах, бактерии вызывают свечение, например рыбной чешуи, грибов, гниющих деревьев и пищевых продуктов. Многие из них способны размножаться в средах с повышенным содержанием соли (галофильные виды).

Рис. 15. На фото светящиеся бактерии.

Рис. 16. Светящиеся бактерии — причина свечения моря.

Некоторые бактерии в процессе жизнедеятельности вырабатывают ароматические вещества (уксусно-этиловые и уксусно-амиловые эфиры), которые придают особый аромат винам, сырам и кисломолочным продуктам.

Рис. 17. На фото кефирный гриб. В нем живут и размножаются вместе более десяти микроорганизмов (симбиоз). Основные из них — молочные дрожжи, уксуснокислые и лактобактерии.

Пигменты бактерий

Почти все бактерии в процессе своей жизнедеятельности вырабатывают пигменты.

  • Пигмент располагается между клетками и имеет вид зернышек у Bacterium prodigiosum и Staphylococcus aureus.
  • У Bacterium violaceum пигмент расположен в оболочке.
  • Bacterium pyocyaneum выделяет пигмент в окружающую среду.

Некоторые бактерии растворимы в воде и окрашивают питательную среду. Пигменты стафилококка и сарцин (желтые пигменты) растворимы в спирту, но не растворяются в воде. Не растворяются ни в спирту, ни в воде, пигменты бурого и черного цветов дрожжей и плесени.

Пигменты образуются в условиях присутствия кислорода. Они имеют самые разнообразные цвета. Их физиологическая роль учеными до конца не установлена.

В настоящее время широко изучается химический состав и природа пигментов, которые синтезируют бактерии. Пигменты являются биологически активными веществами — антибиотиками, фитонцидами, стимуляторами роста. Пигменты вместе с другими факторами являются инструментом при их систематике. Русские ученые впервые установили связь между пигментами бактерий и их физиологическими функциями.

Рис. 18. На фото слева направо: бактерия Моргана, синегнойная палочка, неинокулированный контроль, Протеус Мирабилис и кишечная палочка, выращенные на среде Клиглера (содержит цитрат железа).

Рис. 19. На фото колонии микрококков желтого цвета.

Рис. 20. На фото колонии Bacterium prodigiosum кроваво-красного цвета.

Рис. 21. На фото колонии Bacteroides niger черного цвета.

Рис. 22. На фото колонии синегнойной палочки сине-зеленого цвета.

Подробно о бактерияx читай в статьях:

Как и всему живому, бактериям присущи такие процессы, как питание, дыхание, размножение и спорообразование. Они вырабатывают ферменты и пигменты, по наличию которых проводится их идентификация. За миллионы лет бактерии освоили практически все известные биохимические процессы. Они участвуют в перемещении концентрации и рассеивания химических элементов в биосфере земли и полностью обеспечивают жизнедеятельность человека.

В живой природе встречаются два способа получения клетками органических веществ, т. е. два способа питания. Первый — это автотрофное питание, когда клетки организма сами способны синтезировать органические вещества из неорганических. Второй способ — гетеротрофное питание, когда клетки нуждаются, чтобы в них поступали органические вещества из вне. Автотрофное питание характерно для царства растений, а гетеротрофное — для царства животных и царства грибов.

Бактерии можно считать одними из первых организмов, появившихся на Земле. От них происходили растительные и животные клетки. Поэтому у бактерий встречаются оба главных способа питания, то есть среди них и автотрофы, и гетеротрофы. Причем каждый способ имеет несколько своих разновидностей. На заре появления и развития жизни на Земле природа как бы «пробовала», «искала» возможные способы питания организмов. И «находила» более эффективные, которые в дальнейшем давали развитие более сложным организмам.

Несмотря на то, что среди бактерий есть как автотрофы, так и гетеротрофы, однако гетеротрофных бактерий существенно больше.

Одними из представителей автотрофных бактерий являются цианобактерии. Их еще называют сине-зелеными водорослями. Однако это всё же бактерии, а не растения, так как их клетки не имеют ядер. А водорослями их называют из-за того, что они образуют органические вещества из неорганических как растения, то есть с помощью процесса фотосинтеза. В процессе фотосинтеза образуется не только органическое вещество, но и выделяется кислород. Когда на Земле только появилась жизнь, в атмосфере кислорода почти не было. По этой причине дыхание у организмов было бескислородное. Оно не эффективно. И это тормозило развитие жизни. Появление фотосинтеза у цианобактерий и выделение ими кислорода способствовало тому, что в атмосфере начал накапливаться кислород. В дальнейшем появилось эффективное кислородное дыхание, и эволюция жизни на Земле ускорилась.

Кроме фотосинтеза у бактерий существует другой способ автотрофного питания — это хемосинтез. Разница между ними заключается в том, что при фотосинтезе органические вещества синтезируются за счет энергии света, а при хемосинтезе — за счет энергии, которая выделяется при окислении неорганических веществ. Например, железобактерии окисляют железо. Выделяющаяся при этом энергия идет на синтез органического вещества из неорганических.

Бактерии, которые питаются гетеротрофно, также бывают разными. Можно выделить бактерий-сапрофитов, бактерий-паразитов и бактерий-симбионтов.

Сапрофиты питаются за счет отмерших частей растений, погибших организмов. Они не наносят вред живым организмам. Наоборот, они приносят пользу природе, разлагая органические вещества до неорганических, которые становятся доступны растениям. Другими словами, бактерии-сапрофиты принимают активное участие в круговороте веществ в природе, что является важным для существования жизни на Земле.

Паразиты питаются за счет живых организмов и наносят им вред. Именно бактерии-паразиты приводят к многим болезням животных (в том числе человека) и растений. Они могут наносить серьезный вред сельскому хозяйству.

Симбионты сожительствуют с живыми организмами, и это сожительство приносит пользу как бактерии, так и организму-хозяину. Примерами бактерий-симбионтов являются клубеньковые бактерии, которые живут в корнях у бобовых растений. Эти бактерии могут связывать азот из атмосферы в органические вещества и «делятся» ими с растением. Бобовое растение же дает бактериям питательные вещества. Также другие бактерии-симбионты живут в кишечнике многих животных и помогают им переваривать пищу.

Adblock detector